Design Of A Heating System In A Plastic Injection Molding Machine With A Working Temperature Of 250 C

  • Achmad Faizal Dwi Bagas Universitas Wijaya Putra
  • Muharom Muharom Universitas Wijaya Putra
  • Mochammad Muchid Universitas Wijaya Putra
  • Alfi Nugroho Universitas Wijaya Putra
  • Navik Kholili Universitas Wijaya Putra

Abstract

The working system of the heating process on a plastic injection molding machine needs to be considered in more detail. Due to the influence of temperature and the type of material according to the quality of the product. In this study, the plastic injection machine that used a temperature variation used several different variations, and three experiments were given at each temperature variation of 200°C – 250°C using 75 grams of plastic material with a heating time of 120-141 seconds and 150 grams of plastic material with a heating time of 120-141 seconds. Warm-up 210-250 seconds. Temperature control using the REX C100 Controller. The injection machine can operate according to the design. Namely, the heating temperature can be adjusted. Implementation and control of the control system show a good response. The plastic to be melted is of the HDPE (High-Density polypropylene) type with a temperature for melting the plastic of 250°C.

References

W. Windarta, G. Hidayat, and A. Chaeruddin, “Rancang Bangun Mesin Daur Ulang Limbah Botol Plastik HDPE Menjadi Gagang Pintu Kapasitas 1 kg/jam,” Pros. Semnastek, vol. 0, no. 0, Nov. 2019, doi: 10.31328/JS.V1I1.569.

A. M. M. Al Bakri, S. M. Tamizi, A. R. Rafiza, and Y. Zarina, “Investigation of HDPE Plastic Waste Aggregate on the Properties of Concrete,” J. Asian Sci. Res., vol. 1, no. 7, pp. 340–345, Nov. 2011, Accessed: Mar. 09, 2023. [Online]. Available: https://archive.aessweb.com/index.php/5003/article/view/3305.

H. Yanto, I. Saputra, and S. W. Satoto, “Analisa Pengaruh Temperatur dan Tekanan Injeksi Moulding terhadap Cacat Produk,” J. Integr., vol. 10, no. 1, pp. 1–6, Feb. 2018, doi: 10.30871/JI.V10I1.641.

G. Ririh, B. Setiawan, and I. Siradjuddin, “Kontrol Suhu Extruder Menggunakan Metode Feeding Biji Plastik HDPE Pada 3D Printer Simetris Bilateral,” J. Elkolind J. Elektron. dan Otomasi Ind., vol. 8, no. 1, pp. 26–33, May 2021, doi: 10.33795/ELK.V8I1.224.

E. Novianarenti, G. Setyono, and A. G. Safitra, “Experimental Study of the Performance Characteristic an Induced Draft Cooling Tower with Variates Fillings,” IOP Conf. Ser. Mater. Sci. Eng., vol. 462, no. 1, 2019, doi: 10.1088/1757-899X/462/1/012027.

A. A. B. Persada, A. Mursadin, and Z. Zulkifli, “Perancangan Rangkaian Sistem Pemanas Pada Plastic Injection Molding,” Elem. J. Tek. MESIN, vol. 8, no. 2, pp. 157–162, 2021, doi: 10.34128/JE.V8I2.164.

R. Arief Siregar, D. Ahmad, and R. Rangkuti, “Pembuatan Cetakan Kotak Sabun Pada Mesin Injection Molding Plastik,” J. Rekayasa Mater. Manufaktur dan Energi, vol. 1, no. 1, pp. 57–63, Sep. 2018, doi: 10.30596/RMME.V1I1.2436.

G. Setyono, “Hydroxy Gas (HHO) Supplement of Ethanol Fuel Mixture In A Single-Cylinder Spark-Ignition Matic-Engine,” J. Mech. Eng. Mechatronics, vol. 5, no. 2, pp. 114–121, Oct. 2020, doi: 10.33021/JMEM.V5I2.1136.

M. Ulum et al., “Pengabdian Masyarakat Penyuluhan Perakitan Lampu Penerangan Bertenaga Surya Kepada Masyarakat Nambangan,” J. Sci. Soc. Dev., vol. 3, no. 1, pp. 1–7, 2020.

G. Setyono and A. A. Arifin, “Effect of Ethanol-Gasoline Mixes on Performances in Last Generation Spark-Ignition Engines Within the Spark-Plug No Ground-Electrodes Type,” Mek. J. Tek. Mesin, vol. 5, no. 02, pp. 19–26, 2019.

Gatot Setyono; D. S. Kawano, “Pengaruh Penggunaan Variasi Elektroda Busi terhadap Performa Motor Bensin Torak 4 Langkah,” Saintek, vol. 11, no. 2, pp. 69–73, 2014.

I. Hanafi and K. Hariyanto, “Perancangan Alat Pemanas Air Tenaga Surya Dengan Metode Kansei Engineering,” J. Syst. Eng. Technol. Innov., vol. 1, no. 01, pp. 19–24, Apr. 2022, doi: 10.38156/JISTI.V1I01.12.

Y. M. Prasetyo, S. Budiarto, M. P. Perdana, and S. Siswadi, “Rancang Bangun Ulang Motor Listrik Berbasis Android Dengan Sistem Motor Brushless Direct Current (BLDC) 3 Phase Kapasitas 1000 Watt,” J. Syst. Eng. Technol. Innov., vol. 1, no. 01, pp. 13–18, Apr. 2022, doi: 10.38156/JISTI.V1I01.11.

A. R. Dewananta, R. A. Rahmadhani, D. M. Fantoja, M. Muharom, and G. Setyono, “Rancang Bangun Rombong Listrik Dengan Menggunakan Pembangkit Listrik Tenaga Surya (PLTS) Kapasitas 200 Watt,” J. Syst. Eng. Technol. Innov., vol. 1, no. 01, pp. 1–6, Apr. 2022, doi: 10.38156/JISTI.V1I01.9.

M. F. A. Ismantoko, D. Kurniawan, O. A. W. Rijanto, M. H. Abdullah, S. Subaderi, and K. Hariyanto, “Perancangan Sistem Deteksi Dan Pemadam Kebakaran Berbasis Arduino Dengan Metode QFD,” J. Syst. Eng. Technol. Innov., vol. 1, no. 02, pp. 55–64, Oct. 2022, doi: 10.38156/JISTI.V1I02.27.

R. Agustin et al., “Rancang Bangun Alat Purifikasi Gas Buang Pirolisis Dengan Sistem Absorber Dan Adsorber Kontinyu,” J. Syst. Eng. Technol. Innov., vol. 1, no. 02, pp. 71–76, Oct. 2022, doi: 10.38156/JISTI.V1I02.29.

Published
2023-04-14
Section
Articles