http://jurnal.uwp.ac.id/ft/index.php/JISTI/issue/feedJournal of System Engineering and Technological Innovation2024-11-17T08:58:39SE Asia Standard TimeOpen Journal SystemsThe Journal of System Engineering and Technological Innovation (JISTI)http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/108Studi Eksperimental Pengaruh Massa Pemberat Pada Sistem Penggerak Mekanisme Pembangkit Listrik Tenaga Oscillating Water Column2024-11-17T08:58:30SE Asia Standard TimeRizky Nur Aryarizky32@gmail.comAhmad Anas Arifinahmadanasarifin130@gmail.comMiftahul Ulumulum@uqgresik.ac.id<p><em>The demand for electrical power is increasing, and with the depletion of fossil fuel reserves, there are numerous opportunities to explore alternative energy sources. Ocean waves have emerged as a promising renewable energy option, particularly in developed nations. Given Indonesia's geography as an archipelagic country with numerous beaches, it is well positioned to harness the potential of ocean wave power plants. Among the various ocean wave power plant designs, the oscillating water column system stands out for its ease of implementation and minimal access requirements. This system operates by capturing the air pressure generated by ocean waves reaching the coast. A study was conducted to experiment with a prototype power generation mechanism that serves as both a pressure generator and a substitute for artificial waves in the oscillating water column power plant system. The objective of this study was to investigate the impact of varying ballast masses on pressure and power generation. The test results revealed that the minimum pressure and power output were recorded with a ballast mass of 0 kg, yielding a pressure of 214.62 N and a power output of 8.811 J/s. Conversely, the maximum compressive force and power output were achieved with a ballast mass of 2 kg, resulting in a compressive force of 235.2 N and a compressive power of 15.755 J/s. The highest efficiency was observed with a ballast mass of 2 kg, yielding an efficiency of 45%.</em></p>2024-11-13T00:00:00SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/100Design And Construction Of Small Scale Plastic Injection Molding Machine Using High-Density Polyethylene (HDPE) Material2024-11-17T08:58:32SE Asia Standard TimeFikarahman Putra Haufhau94@gmail.comMuharom Muharommuharom@uwp.ac.idGatot Setyonogatotsetyono@uwp.ac.idDwi Khusnadwikhusna@uwp.ac.idNavik Kholilinavikkholili@uwp.ac.id<p><em>Injection molding has become a significant manufacturing technique in producing complex polymer components. Its molding efficiency depends on various process and machine parameters, which determine the quality of the final product in terms of various output responses. It is important to state that proper optimization of different input parameters is essential to achieve the desired quality index. This article presents a review of various techniques used so far to optimize various injection molding parameters, along with their advantages and limitations. It is found in the review that a brilliant technique that can be operated without human intervention has not been developed. The design of the injection machine uses a small scale between 75 gr to 150 gr with a heating variation ranging from 200 <sup>0</sup>C to 250 <sup>0</sup>C. When testing the tool, it showed that to achieve the optimal final result of a product, it takes 228 seconds at a hot temperature of 200 <sup>0</sup>C; if the temperature is increased to 225 <sup>0</sup>C, it takes 217 seconds, and if it is increased to 250 <sup>0</sup>C, it takes a shorter time of 208 seconds.</em></p>2024-11-13T07:16:17SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/98Design And Construction Of A Dodol Dough Mixing Machine With An Electric Motor Drive With A Capacity Of 10 Kg2024-11-17T08:58:33SE Asia Standard TimeSyahri Ashabul Kahfiskahfi90@gmail.comSiswadi Siswadisiswadi@uwp.ac.idSlamet Riyadislametriyadi@uwp.ac.idWahyu Nugrohowahyunugroho@uwp.ac.idAlfi Nugrohoalfinugroho@uwp.ac.idMochamad Muchidmochammadmuchid@uwp.ac.id<p><em>The process of cooking dodol dough requires the energy of several people to stir continuously until the dough produces air bubbles. Making dodol generally takes time depending on how much dough you want to cook. If we cook 10 kg of dodol dough, the time needed to cook it is approximately 10-12 hours with medium or normal heat. Currently, the household-scale dodol industry still uses manual methods for the dodol mixing process, which will require more than one person to stir for a long time, so it will take time for one repetitive job and production costs will be higher. This activity aims to create appropriate technology in the form of a dodol mixer machine. With this dodol mixer machine, it is expected to be able to produce optimal dodol dough and can increase production capacity. The method used in this activity is the selection and calculation of the components of the designed tool, the creation of a dodol mixer machine design, and continued with a demonstration of the performance of the dodol mixer machine. The result of this activity is the design of a dodol mixer machine. With a 1/2 Hp motor power, this dodol mixer machine can produce 10 kg/hour with multifunction.</em></p>2024-11-13T07:00:46SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/102Penerapan Algoritma Apriori Untuk Rekomendasi Produk Pada Situs Penjualan Toko ABC2024-11-17T08:58:34SE Asia Standard TimeIsnaini Muhandhisisnainimuhandhis@uwp.ac.idMuhammad Zulfan Ramadhani18053023@student.uwp.ac.id<p>Penelitian ini bertujuan untuk memberi fitur rekomendasi produk menggunakan algoritma apriori pada situs penjualan Toko ABC. Manfaat dari fitur rekomendasi adalah untuk memberikan saran produk kepada pembeli berdasarkan produk yang sering dibeli oleh pembeli lain. Metode yang digunakan adalah algoritma apriori. Algoritma Apriori dipilih karena kemampuannya yang terbukti efektif dalam mengidentifikasi pola pembelian pada data transaksi yang besar. Hasil implementasi algoritma apriori dalam penelitian ini menghasilkan nilai 25% support untuk tiga item set dari pembelian produk. Berdasarkan perhitungan algoritma apriori, produk yang saling terkait adalah Kopiko Coffe Caramel, Kusuka Keripik Singkong Ayam Seaweed, Sari Roti Roti Tawar Double Soft dengan nilai support 25%. Penerapan ini dapat memberikan informasi agar strategi penjualan menjadi lebih terarah dengan menargetkan produk yang tepat kepada pelanggan yang tepat.</p>2024-11-13T06:59:29SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/99Pemilihan Karyawan Terbaik Menggunakan Metode Simple Additive Weighting (SAW) Berbasis Website di PT Trans XYZ2024-11-17T08:58:36SE Asia Standard TimeNurwahyudi Widhiyantanurwahyudiwidhiyanta@uwp.ac.idOctavianus Ongki Talloongki178@gmail.com<p>Pemilihan karyawan terbaik merupakan salah satu tugas penting dalam manajemen SDM. Hal ini diharapkan dapat menentukan ukuran kinerja yang representatif dan dapat meningkatkan semangat karyawan dalam melaksanakan pekerjaannya. PT. Trans XYZ sebulan sekali memilih karyawan terbaik, di mana karyawan terpilih akan mendapatkan hadiah. Kriteria yang digunakan perusahaan untuk memilih karyawan terbaik adalah skill, absensi, ketertiban, tanggung jawab, kerja sama dan kreatifitas. Untuk membantu perusahaan menentukan karyawan terbaik setiap bulannya, kami bertujuan untuk membuat aplikasi yang dapat digunakan untuk menghitung nilai semua karyawan secara otomatis. Metode yang digunakan dalam memilih karyawan terbaik adalah Simple Additive Weighting (SAW). Hasil dari penelitian ini adalah aplikasi dapat menghitung nilai setiap karyawan dengan kriteria yang telah ditentukan dan menentukan karyawan terbaik</p>2024-11-13T06:57:04SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/109Improving Food & Beverage Industry Performance With Performance Prism And AHP (Analytical Hierarchy Process) Method In The Era Of Digital Transformation2024-11-17T08:58:37SE Asia Standard TimeArby Andikaarby.andika22@gmail.comChendrasari Sari Octaviachendrasariwahyuoctavia@uwp.ac.idFitriya Gemala Dewifitriyagemaladewi@uwp.ac.idSubaderi Subaderisubaderi@uwp.ac.idKrisnadi Hariyantokrisnadi@uwp.ac.id<p>MSMEs in the food and beverage industry are one of the leading sectors in Surabaya. MSMEs in the food and beverage industry still experience many difficulties in their development, especially in marketing, there is also the use of technology, lack of innovation, and low quality of human resources. Other obstacles often faced by MSMEs that are members of consumer cooperatives are marketing, many competitors and maintaining existing markets. In addition, MSME owners also pay less attention to marketing strategies and maintaining customer relationships. The quality of service in this case is closely related to sales which have a reference to the performance of the MSME. Problem identification in this study is the unknown improvements to improve the performance of MSMEs, the unknown most effective way to improve <em>stakeholder satisfaction </em>and the unknown strategies that must be carried out, the processes needed to achieve these goals, and the capabilities that must be prepared to implement them in order to achieve the target. Measuring the performance of food and beverage MSMEs by identifying KPIs <em>(Key Performance Indicators) </em>and the performance <em>prism method </em>consists of five perspectives, satisfaction, contribution, strategy, process, and capability. The results of the study were obtained based on the processing of key performance indicators <em>(Key Performance Indicators, KPI) </em>with the highest weighting value from each stakeholder <em>. </em>The KPI with the highest weighting will be applied to the proposed improvements. By making improvements to these indicators, it is expected to improve the performance of MSMEs in the future.</p>2024-11-17T08:48:55SE Asia Standard Time##submission.copyrightStatement##http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/110Improving The Quality Of Steel Plate Finishing Process Using Six Sigma, FMEA, And QFD Methods2024-11-17T08:58:38SE Asia Standard TimeIrwan Novantoroirwannovantoro2237@gmail.comM. Hasan Abdullahmhasanabdullah@uwp.ac.idOng Andre Wahyu Riyantoongandre@uwp.ac.idOnny Purnamayudhiaonnypurnamayudhia@uwp.ac.idAstria Hindratmoastriahindratmo@uwp.ac.idAmpar Jaya Suwondoamparjayasuwondo@uwp.ac.id<p>XYZ is a manufacturing company engaged in the hot rolled steel plate <em>rolling mill industry. The results of the finishing production report </em>show that the <em>finishing line process </em>has the highest proportion of defects compared to <em>gas cutting plates </em>( <em>flare cutting </em>). This study identifies the causes and solutions for repairing defects in <em>the finishing line </em>using the <em>Six Sigma </em>and FMEA-QFD methods. Based on the initial calculation results, it was obtained that the sigma level and DPMO value were 3.28 and 37,821. From the results of the Pareto diagram, there are five types of defects, namely <em>chamber, BC (bad cutting), BE (bad edge), handling, </em>and <em>OOS (out of square) </em>. The dominant type of defect is <em>the chamber </em>with a percentage of 31.9%. Factors causing defects include operator fatigue, lack of discipline, poor lighting, less than optimal maintenance, knife quality, worn <em>sideguards </em>, and materials. The results of the FMEA analysis show three priorities for proposed improvements, namely, improving operator supervision and SOPs, developing <em>sideguard designs </em>, and knife replacement standards. The development of the <em>sideguard design </em>uses the QFD method, which produces specifications in the form of <em>integrated</em> <em>roll </em>with a distance of 600mm, sideguard dimensions of 6096x200 millimeters with a thickness of 16mm, and made of ASTM A36 steel. The improvements made showed a more stable process with a decreasing number of <em>chamber defects and increasing the Sigma Level value to 3.4 </em>.</p>2024-11-17T08:48:19SE Asia Standard Time##submission.copyrightStatement##