Studi Eksperimental Pengaruh Massa Pemberat Pada Sistem Penggerak Mekanisme Pembangkit Listrik Tenaga Oscillating Water Column

  • Rizky Nur Arya Institut Teknologi Adhi Tama Surabaya
  • Ahmad Anas Arifin Institut Teknologi Adhi Tama Surabaya
  • Miftahul Ulum Universitas Qomaruddin
Keywords: Mechanism for creating pressure, System for Oscillation, Ballast mass, pressure force, energy.

Abstract

The demand for electrical power is increasing, and with the depletion of fossil fuel reserves, there are numerous opportunities to explore alternative energy sources. Ocean waves have emerged as a promising renewable energy option, particularly in developed nations. Given Indonesia's geography as an archipelagic country with numerous beaches, it is well positioned to harness the potential of ocean wave power plants. Among the various ocean wave power plant designs, the oscillating water column system stands out for its ease of implementation and minimal access requirements. This system operates by capturing the air pressure generated by ocean waves reaching the coast. A study was conducted to experiment with a prototype power generation mechanism that serves as both a pressure generator and a substitute for artificial waves in the oscillating water column power plant system. The objective of this study was to investigate the impact of varying ballast masses on pressure and power generation. The test results revealed that the minimum pressure and power output were recorded with a ballast mass of 0 kg, yielding a pressure of 214.62 N and a power output of 8.811 J/s. Conversely, the maximum compressive force and power output were achieved with a ballast mass of 2 kg, resulting in a compressive force of 235.2 N and a compressive power of 15.755 J/s. The highest efficiency was observed with a ballast mass of 2 kg, yielding an efficiency of 45%.

References

M. Ahsan, “Tantangan dan Peluang Pembangunan Proyek Pembangkit Listrik Energi Baru Terbarukan (EBT) di Indonesia,” Sutet, vol. 11, no. 2, pp. 81–93, 2021, doi: 10.33322/sutet.v11i2.1575.

G. Sihombing, “Tinjauan Strategi Dan Potensi Pemanfaatan Energi Terbarukan Bagi Negara Berkembang Di Asia Tenggara,” E-Link J. Tek. Elektro dan Inform., vol. 17, no. 1, p. 35, Jul. 2022, doi: 10.30587/E-LINK.V17I1.3916.

S. Mochammad saddam amiruddin, “Analisa Pengaruh Sudut Sudu Dan Variasi Debit Air Terhad …,” Pros. Senakama, vol. 3, no. September, pp. 250–258, 2023.

F. A. Pratama and M. Ulum, “Pengaruh Kombinasi Jumlah Piston dan Turbin Terhadap Performa Pembangkit Listrik Tenaga Mekanisme Oscillating Water Column,” Rekayasa, vol. 16, no. 3, pp. 359–364, 2023.

B. A. Nasir, “Design considerations of micro-hydro-electric power plant,” Energy Procedia, vol. 50, pp. 19–29, 2014, doi: 10.1016/j.egypro.2014.06.003.

A. Syahruddin, A. Rijanto, and D. N. Zulfika, “Analisis Instalasi Pembangkit Listrik Tenaga Microhydro ( Pltmh ) Menggunakan Dinamo Zyt-70-05 Universitas Islam Majapahit , Mojokerto Email : [email protected] Pendahuluan Listrik merupakan kebutuhan yang sangat penting bagi kehidupan manusia .,” Majamecha, vol. 3, pp. 121–126, 2021.

A. Wijaya Sitepu, J. B. Sinaga, and D. Agus Sugiri, “Kajian Experimental Pengaruh Bentuk Sudu Terhadap Unjuk Kerja Turbin Helik Untuk Sistem Pembangkit Listrik Tenaga Mikrohidro (PLTMH),” J. FEMA, vol. 2, no. 2, pp. 72–78, 2014.

A. Syarif et al., “Rancang Bangun Prototipe Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Turbin Pelton The Design Of Pelton Turbine Micro Hydro Power,” Kinetika, no. m, pp. 1–6, 2019.

Y. Pamungkas et al., “Study Eksperimental Pembangkit Listrik Tenaga Gelombang Laut Metode Mekanis Apung Menggunakan Sistem Transmisi Sproket dan Variasi Panjang Lengan.”

A. Noerpamoengkas and M. Ulum, “Pemodelan Pengaruh Frekuensi Dan Amplitudo Eksitasi Terhadap Respon Gerak Dan Daya Mekanis Pendulum Vertikal Pada Konverter Energi Gelombang Laut,” Pros. Semin. Nas. Sains dan Teknol. Terap. III, pp. 201–210, 2015.

M. Ulum, “Studi Experimental Energi Bangkitan Pembangkit Listrik Tenaga Gelombang Laut Model Pelampung,” IPTEK, vol. 22, pp. 29 – 36, 2018, doi: https://dx.doi.org/10.31284%0b/j.iptek.2018.v22i1.231.

F. M. Gadelho and C. Guedes Soares, “CFD study of a Dual Chamber Floating Oscillating Water Column device,” Ocean Eng., vol. 261, Oct. 2022, doi: 10.1016/j.oceaneng.2022.111817.

M. Rosati, J. C. C. Henriques, and J. V. Ringwood, “Oscillating-water-column wave energy converters: A critical review of numerical modelling and control,” Energy Convers. Manag. X, p. 100322, Dec. 2022, doi: 10.1016/j.ecmx.2022.100322.

M. Batlle Martin, G. Pinon, G. Barajas, J. L. Lara, and J. Reveillon, “Computations of pressure loads on an oscillating water column with experimental comparison for random waves,” Coast. Eng., vol. 179, Jan. 2023, doi: 10.1016/j.coastaleng.2022.104228.

S. Brusca, F. Cucinotta, A. Galvagno, R. Lanzafame, S. Mauro, and M. Messina, “Oscillating Water Column Wave Energy Converter by means of straight-bladed Darrieus turbine,” Energy Procedia, vol. 82, pp. 766–773, 2015, doi: 10.1016/j.egypro.2015.11.809.

S. Susastro, A. Noerpamoengkas, M. Ulum, and G. Setyono, “Performance Analysis of Wind Power Generation Models Using Oscillating Water Column,” JRST (Jurnal Ris. Sains dan Teknol., vol. 4, no. 2, p. 57, Nov. 2020, doi: 10.30595/jrst.v4i2.6020.

M. Ulum, A. Noerpamoengkas, A. A. Arifin, and H. D. Firmansyah, “Studi Eksperimental Pengaruh Kecepatan Engkol dan Variasi Diameter Disk terhadap Amplitudo, Frekuensi dan Daya pada Mekanisme Pembangkit Gelombang,” J. Mech. Eng. Sci. Innov., vol. 1, no. 1, May 2021, doi: 10.31284/J.JMESI.2021.V1I1.1761.

D. L. O’Sullivan and A. W. Lewis, “Generator selection for offshore oscillating water column wave energy converters,” 2008 13th Int. Power Electron. Motion Control Conf. EPE-PEMC 2008, pp. 1790–1797, 2008, doi: 10.1109/EPEPEMC.2008.4635525.

F. Ludji, V. A. Koehuan, and Nurhayati, “Analisis Efisiensi Sistem Osilator Kolom Air sebagai Pembangkit Daya Tenaga Gelombang Laut,” Lontar, vol. 1, no. 2, pp. 18–25, 2014.

Published
2024-11-13
Section
Articles