Prediksi Nilai Kelulusan Sekolah Menengah Atas Menggunakan Metode Backpropagation

  • Muhammad Iqbal Firdiyansah Universitas Wijaya Putra
  • Suzana Dewi Universitas Wijaya Putra

Abstract

Schools play an important role in providing the best education as well as developing and creating the character of a child who will become the nation's successor in the future. Starting from providing online education, making learning materials as efficient as possible and not burdening students in learning. But every level of education requires evaluation as a benchmark, one of which is the Regional School Examination. This study aims to create a system that can predict exam scores. This system uses the Artificial Neural Network method with the Backpropagation algorithm to predict student grades. Based on the test results, the neural network model has data management with five inputs and one output. The input value is obtained from the student's grades from semester one to semester five. The output value is the predicted score of the Regional School Examination. From a number of tests, the highest accuracy level was 89.8579% at the 100th epoch. With the development of this application, it is hoped that it can help improve the efficiency of MA Imam Syafi'i learning

Author Biography

Suzana Dewi, Universitas Wijaya Putra

Informatics Engineering Department Faculty of Engineering Universitas Wijaya Putra

References

Dar, M. H. (2017) ‘Penerapan Metode Backpropagation Neural Network Untuk Memprediksi Produksi Air’, Majalah Ilmiah INTI, 12(2), pp. 203–208.

Apriyani, Y. (2018) ‘Penerapan Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Nilai UN Siswa SMPN 2 Cihaurbeuti’, IJCIT (Indonesian Journal on Computer and Information Technology), 3(1), pp. 63–70.

Satria, B. (2018) ‘Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2(3), pp. 674–684. doi: 10.29207/resti.v2i3.575.

Simbolon, I. A. R., Yatussa’ada, F. and Wanto, A. (2019) ‘Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia’, Jurnal Informatika Upgris, 4(2). doi: 10.26877/jiu.v4i2.2423.

Lestari, W. W. (2018) ‘IMPLEMENTASI ALGORITMA BACKPROPAGATION NEURAL NETWORK DALAM PREDIKSI NILAI UJIAN NASIONAL SISWA SEKOLAH MENENGAH PERTAMA (STUDI KASUS SMP N 1 BINTAN)’, Journal of Physics A: Mathematical and Theoretical, 44(8), pp. 1689–1699. doi: 10.1088/1751-8113/44/8/085201.

Published
2025-04-29
Section
Articles